Abstract
The distributions of potential and current density around a cathodically protected pipeline in seawater were determined using the boundary element technique. A nonlinear polarization curve for a low carbon steel in artificial sea water was obtained from dc‐potentiodynamic measurements and was fitted for use as the boundary condition on the pipe. The program was used to evaluate cases in which one or two aluminum sacrificial anodes are used to protect a low carbon steel pipe in seawater. The results show that the number of anodes, the sizes of the anodes, and the distance between the anodes and the cathode are of importance for cathodic protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.