Abstract

A one dimensional reactive transport model was developed in order to illustrate the biogeochemical behavior of arsenic and iron reduction and release to groundwater that accounts for the reaction coupling the major redox elements under reducing environment. Mass transport equation and the method of characteristics were used considering fundamental geochemical processes to simulate transport processes of different pollutants in mobile phase. The kinetic sub-model describes the heterotrophic metabolisms of several microorganisms. To model a complete redox sequence (aerobic or denitrifiers, Fe(III)-reduction, respiration bacteria of iron and arsenic compounds, and As(V) reduction) four functional bacterial groups (X1, X2, X3, and X4) were defined. Microbial growth was assumed to follow Monod type kinetics. The exchange between the different phases (mobile, bio, and matrix) was also considered in this approach. Results from a soil column experiment were used to verify the simulation results of the model. The model depicts the utilization of oxygen, nitrate, iron oxide and arsenic as electron acceptors for oxidation of organic carbon (OC) in a column. The OC as electron donor is one of the most important factors that affect the iron and arsenic reduction bacterial activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.