Abstract

Agitated thin-film dryers (ATFDs) are used to produce dry free-flowing powder from slurry/solution-type feed and widely implemented in pharmaceutical, chemical, and food industries. The feed passes through the ATFD in several forms such as solution/slurry and successively becomes paste, wet powder, and dry powder. The flow of feed in the ATFD undergoes a helical path (combination of rotational velocity imparted by the agitator/blade and axial velocity of feed) while flowing through the annular part of the dryer. The ATFD is described stage-wise and the parameters such as physical properties, scraped surface heat transfer coefficient, and evaporation rate (drying rate) are derived using stepwise model equations. The penetration theory is modeled to obtain the scraped-side heat transfer coefficient. The model equations were solved using MATLAB 7 (MathWorks Inc., Natick, MA) and the simulated drying rate was consequently validated with the experimental values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.