Abstract
Self-replication is an essential attribute of life but the molecular-level mechanisms involved are not well understood. Cellular self-replication requires not only duplicating all cellular components and doubling volume and membrane area, but also replicating cellular geometry. A whole-cell modeling framework is presented in which an assumed reaction network determines both concentration changes of cellular components and cell geometry. Cell shape is calculated by minimizing membrane-bending energy. Using this framework, simultaneous doubling of volume, surface area, and all components was found to be insufficient to provide mid-cell “pinching” of the parental cell to form two daughter cells. This prompted the design of a minimal protocell that includes a growing shell, a cell-cycle engine, and a contractile ring to enforce cytokinesis. Kinetic parameters were found such that the system exhibited periodic behavior with fundamental aspects of self-replication. This involved simultaneous doubling of all cellular components during a cell cycle, doubling cell volume and membrane area, achieving periodic changes in surface/volume ratio, and forming daughter cells that were geometrically equivalent to each other and to the “newborn” parental cell. The results presented here impact the design of laboratory protocells and the development of a modular strategy for constructing a comprehensive in silico whole-cell model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.