Abstract

Dip coating is a simple, straightforward, and economical technique used in many food industrial applications. The objective of this work was to validate a mathematical model (presented by the authors in a companion paper as Part 1) of the fluid-dynamic variables in a dip-coating process considering that the film-forming fluid behaves as a generalized Newtonian fluid, with data obtained from literature, and to perform a sensitivity analysis. A validation process was carried out using experimental data of average film thickness of different film-forming fluids (commercial milk chocolate, commercial deep-fat frying batters, glycerol/water solutions, sugar/syrup solutions, glycerine/water solutions, mineral oil, and Carbopol solutions). On the basis of the low errors obtained, predictions were considered satisfactory. An extensive examination of the effect of the main process variables, such as τ0, K, n, m, Up, ρ, θ and h, on the velocity profile and the characteristics of the local and average film thickness was established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.