Abstract

The goal of precision medicine is to tailor treatments to the individual patient’s disease. In radiation oncology, this means tailoring the dose to the boundaries of the tumor, but also to the unique biology of the patient’s disease. In recent years, mathematical modeling has made inroads toward achieving these goals, through the optimization of radiation dose based on radiobiological parameters for individual patients. In this chapter, we review recent literature of mathematical models of tumor growth and response to radiation therapy (RT) and discuss the clinical utility of mathematical models, as well as provide a forward-looking perspective into how mathematical models may enhance patient outcomes through well-designed clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.