Abstract

We provide a mathematical analysis of and a numerical framework for full-field optical coherence elastography, which has unique features including micron-scale resolution, real-time processing, and noninvasive imaging. We develop a novel algorithm for transforming volumetric optical images before and after the mechanical solicitation of a sample with subcellular resolution into quantitative shear modulus distributions. This has the potential to improve sensitivities and specificities in the biological and clinical applications of optical coherence tomography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.