Abstract

In this study, it is attempted to model and simulate simultaneous removal of CO2 and SO2 from gas streams using polypropylene hollow fiber membrane contactor (HFMC) with Monoethanolamine (MEA) as a liquid absorbent. A comprehensive two-dimensional mathematical model was developed for the transport of pollutant gases through HFMC with chemical reaction on the liquid side. The Equations that obtained for the three sections of membrane contactor with the appropriate boundary conditions were solved using the COMSOL Multiphysics software version 4.2. The effect of MEA concentration, feed gases concentration, gas and liquid velocity on absorption has been studied. The velocity profile and concentration distribution of gas and liquid are also investigated on HFMC. The modeling predictions indicated that the removal of acid gas increased with increasing the liquid velocity in the membrane contactor. Also increasing the gas velocity will decrease the acid gas removal efficiency. And increasing solvent concentration will increase removal efficiency. Finally, to validate the developed model, a comparison was made between the simulation predictions of the model and the experimental data which resulted into significant corroboration between them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call