Abstract
A mathematical modeling for description of oscillation suppression by deep brain stimulation (DBS) is explored in this paper. High-frequency DBS introduced to the basal ganglia network can suppress pathological neural oscillations that occur in the Parkinsonian state. However, selecting appropriate stimulation parameters remains a challenging issue due to the limited understanding of the underlying mechanisms of the Parkinsonian state and its control. In this paper, we use a describing function analysis to provide an intuitive way to select the optimal stimulation parameters based on a biologically plausible computational model of the Parkinsonian neural network. By the stability analysis using the describing function method, effective DBS parameter regions for inhibiting the pathological oscillations can be predicted. Additionally, it is also found that a novel sinusoidal-shaped DBS may become an alternative stimulation pattern and expends less energy, but with a different mechanism. This paper provides new insight into the possible mechanisms underlying DBS and a prediction of optimal DBS parameter settings, and even suggests how to select novel DBS wave patterns for the treatment of movement disorders, such as Parkinson's disease.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.