Abstract

A theoretical study of a second-grade nanofluid over a porous medium has been conducted. Stagnation point flow is considered. Effects of nonlinear radiative heat flux, dissipation and Joule heating are considered in the modeling of energy equation. Furthermore, chemical reaction is accounted. The wall is not stationary, but stretching at rate a. Total irreversibility rate is obtained through the second thermodynamics law. Slip mechanism of nanoparticles like Brownian movement and thermophoresis are considered. Suitable transformations lead to ordinary system. Solution development is done through HAM. Effects of pertinent variables are graphically discussed. Skin friction and temperature gradient are examined graphically versus different parameters. It is observed that velocity field decreased versus larger magnetic parameter. Temperature enhances versus rising values of magnetic and radiation variables. Main idea of present flow is listed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.