Abstract
Photosynthesis is a very important process in plants which occurs in chloro- plasts. Plants use photon energy to oxidize water molecule, release oxygen, and convert carbon dioxide to sugar molecule. The process of photosynthe- sis contains two main parts: light dependent reactions and light independent reactions. A mathematical model, which describes the diffusion-transport and related chemical reactions in a multi-component flow in a single C3 plant leaf cell, is constructed. A sub-domain of a leaf cell is considered containing multiple organelles: chloroplast, mitochondria, vacuole, cytoplasm, and peroxisome. A typical distribution of a finite number of these organelles inside a cell is considered. The cell domain is decomposed in 5 sub-domains, separated by fixed interfaces. The interacting chemical reactions induced by light, of the Calvin cycle, the starch synthesis, sugar synthesis, respiration and photores- piration are investigated. A sensitivity analysis was performed, the results allows a reduction of the complex system. A system of partial differential equations, which describes the diffusion-transport and also related chemical reactions is formulated and simulated using the software Gascoigne. For the reduced system, the resulting flow of substances is analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.