Abstract
The current study incorporates variable viscosity and thermal conductivity on modeling Ree-Eyring fluid flow inside a peristaltic non-uniform complaint channel. The small Reynolds number and long-wavelength approximations are employed for resolve the governing nonlinear differential equations. Temperature expression is obtained with the help of series solution method. The graphs are drawn on relevant parameters to investigate its effect on velocity, temperature, concentration, and streamlines through MATLAB 2020b. The results confer more velocity in the Newtonian fluid in comparison with non-Newtonian fluid. Also, the model discloses that the size of the bolus can be varied by varying the viscosity parameter. This result helps in understanding the thrombus formation in blood vessels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.