Abstract
In this paper, a mathematical model for the blood pressure oscillometric waveform (OMW) is developed and a statespace approach using the extended Kalman filter (EKF) is proposed to adaptively estimate and track parameters of clinical interest. The OMW model is driven by a previously proposed pressure-lumen area model of the artery under the deflating cuff. The arterial lumen area is a function of vessel properties, the cuff pressure, and the arterial pressure. Over the deflation period, the arterial pressure causes lumen area oscillations while the deflating cuff pressure adds a slow-varying component to these oscillations. In the previous literature, it has been demonstrated that the oscillometric pulses are proportional to the arterial area oscillations. In this paper, the OMW is modeled as the difference between the whole lumen area model and the slow-varying component of the lumen area caused by the deflating cuff pressure. The OMW model is then represented in the statespace and the extended Kalman filter (EKF) is incorporated to estimate and track the time-varying model parameters during the cuff deflation period. The parameter tracking performance of the EKF is evaluated on a simulated noisy OMW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.