Abstract

A mathematical model for polythermal glaciers and ice sheets is presented. The enthalpy balance equation is solved in cold and temperate ice together using an enthalpy gradient method. To obtain a relationship between enthalpy, temperature, and water content, we apply a brine pocket parameterization scheme known from sea ice modeling. The proposed enthalpy formulation offers two advantages: (1) the discontinuity at the cold‐temperate transition surface is avoided, and (2) no treatment of the transition as an internal free boundary is required. Fourier's law and Fick‐type diffusion are assumed for sensible heat flux in cold ice and latent heat flux in temperate ice, respectively. The method is tested on Storglaciären, northern Sweden. Numerical simulations are carried out with a commercial finite element code. A sensitivity study reveals a wide range of applicability and defines the limits of the method. Realistic temperature and moisture fields are obtained over a large range of parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.