Abstract

In this article, we propose a mathematical model for one-dimensional heat conduction in a three-layered solid considering that an interfacial condition is present for the temperature and heat flux conditions between the layers. The numerical approach is developed by constructing a finite difference scheme to solve the initial boundary–interface problem. The numerical scheme is designed by considering the accuracy of the model on the inner part of each layer, then extending to the interfaces and boundaries by incorporating the continuous interfacial conditions. The finite difference scheme is unconditionally stable, convergent, and easy to implement since it consists of the solution of two algebraic systems. We provide three numerical examples to confirm that our numerical approximation is consistent with the analytical solution and the physical phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.