Abstract

Horizontal Single Belt Casting (HSBC) is a near net shape strip casting technology that will probably gain significant prominence in the coming years. Fluid mechanics and associated heat and mass transfer are important aspects of any continuous casting process, and the HSBC process is no exception. In this study, mathematical models have been developed, using ANSYS FLUENT 14, to assess various aspects of the HSBC process for the Al–Mg–Sc–Zr system. Specific emphasis is placed on a) the effects of substrate surface properties on strip quality, b) liquid metal-air two-phase interactions and meniscus behavior, c) heat fluxes between the metal and substrate, and d) solidification behavior during strip casting. These predictions are validated against experimental casting results. A 5000 series Al–Mg alloy, with added Sc and Zr, shows exceptional potential as a structural material for aerospace and transportation applications. It is also a suitable material to be produced via the HSBC process. Optical microscopy, SEM and EBSD analyses were conducted to compare the potential advantages of casting this alloy via the HSBC process versus conventionally produced Direct Chill Casting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.