Abstract

This paper presents a mathematical model for a model-scale unmanned helicopter robot, with emphasis on the dynamics of the flybar. The interaction between the flybar and the main rotor blade is explained in detail; it is shown how the flapping of the flybar increases the stability of the helicopter robot as well as assists in its actuation. The model helicopter has a fast time-domain response due to its small size, and is inherently unstable. Therefore, most commercially available model helicopters use the flybar to augment stability and make it easier for a pilot to fly. Working from first principles and basic aerodynamics, the equations of motion for full six degree-of-freedom with flybar-degree of freedom are derived. System identification experiments and results are presented to verify the mathematical model structure and to identify model parameters such as inertias and aerodynamic constants. © 2004 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.