Abstract

AbstractThe current study considered electromagnetohydrodynamic (EMHD) flow properties on viscid liquid over wavy walls. Initially, performed the scientific evidence and then explanation of velocity attained by applying the perturbation approach. Through mathematical calculations, we evaluated the corrugation impact on EMHD velocity flow. The impacts of evolving constraints from attained solutions are studied by intriguing the diagrams. The significant hypothesis is that decrease the imperceptible wave consequence on the velocity for the minor value of amplitude proportion parameter. For the small value of amplitude, the curvy phenomenon becomes understandable. In graphical results trapped bolus appears for out phase corrugations. From this study, we have come up with the result that the velocity achieves the extreme value in the mid of the channel. The velocity profile declines for the Reynolds number. The reason is that for the greater amount of the Reynolds number, the velocity fluctuates quickly by lesser amplitudes. The velocity profile decay with the growing value of the curving parameter in [−1,0] and grow in [0,1]. The stress components decline and the stress components rise for the curving parameter. The present analysis has practical applications in biomedical propulsion of targeted drug delivery, manufacturing of peristaltic pumps, transportation of diverse fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call