Abstract

Existing energy-efficient management and development of alternative energy infrastructure are the most important issues in modern industry. The former has been mainly studied in terms of optimal design of utility supply network. The latter has been consistently researched in the field of strategic planning of future global hydrogen supply network. In this work, we develop an integrated network model of huge chemical industrial complexes to combine various utility supply networks with a global hydrogen supply network. To construct an integrated network model, the steam methane reforming process is used as a linkage between the two networks. The developed model is a two-stage stochastic mixed integer linear programming that optimizes total cost and also considers demand uncertainty about water, electricity, steam, and hydrogen that are consumed in each network. Finally, a case study in South Korea is conducted to validate the proposed model; it suggests reasonable scenarios to decision makers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.