Abstract

A mathematical model has been developed to predict the internal stresses generated in a steel ingot during thermal processing. The thermal history of the ingot has been predicted by a finite-element, heat-flow model, the subject of the first part of this two-part paper, which serves as input to the stress model. The stress model has been formulated for a two-dimensional transverse plane at mid-height of the ingot and is a transient, elasto-viscoplastic, finite-element analysis of the thermal stress field. Salient features of the model include the incorporation of time-temperature and temperature-dependent mechanical properties, and volume changes associated with nonequilibrium phase transformation. Model predictions demonstrate that the development of internal stresses in the ingot during thermal processing can be directly linked to the progress of the phase transformation front. Moreover, the low strain levels calculated indicate that metallurgical embrittlement must be very important to the formation of cracks in addition to the development of high tensile stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.