Abstract

A mathematical model is presented of the takeoff phase in the pole vault for an athlete vaulting with a rigid pole. An expression is derived that gives the maximum height that the vaulter may grip on the pole in terms of the takeoff velocity, the takeoff angle, the athlete's vertical reach, and the depth of the takeoff box. Including the dependence of the vaulter's takeoff velocity on the takeoff angle reveals that there is an optimum takeoff angle that maximizes the vaulter's grip height. It is also shown that taller and faster vaulters are able to grip higher on the pole. The results of the investigation compare favorably with data for vaulters using bamboo and steel poles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.