Abstract

A mathematical model of the Lux luminescence system, governed by the operon luxCDABE in the terrestrial bacterium Photorhabdus luminescens, was constructed using a set of coupled ordinary differential equations. This model will have value in the interpretation of Lux data when used as a reporter in time-course gene expression experiments. The system was tested on time series and stationary data from published papers and the model is in good agreement with the published data. Metabolic control analysis demonstrates that control of the system lies mainly with the aldehyde recycling pathway (LuxE and LuxC). The rate at which light is produced in the steady state model shows a low sensitivity to changes in kinetic parameter values to those measured in other species of luminescent bacteria, demonstrating the robustness of the Lux system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.