Abstract

The article analyses the use of servomotors in the control systems of industrial equipment, focusing on the alternative offered by position and speed synchronization in relation to classical mechanical mechanisms. A complete methodology is presented to determine the dynamic parameters of the adopted kinematic system using electronic motion profiles. The results obtained constitute a mathematical model of the execution chain and an analysis of the basic quantities for linear motion, supported by actual measurements of the drive parameters. The merit of the article is to show that the servomotors can significantly simplify the design of the device, make it more flexible in adaptation to different assortments, and allow integration with systems predicting the technical condition of the device. The analysis of the results revealed significant differences in the constant rotational speed of the servomotor, which do not align with previous findings. The results suggest that changing the angular working range of the assembly to the range (205°;270°) could significantly affect the generated linear acceleration, reducing the risk of stalling. The calculations and graphs conducted allowed for the accurate representation of the actual mechanical system, considering its dynamic characteristics. The key conclusion is that precise mathematical modelling is essential to ensure the stability and durability of engineering components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.