Abstract

This chapter introduces and explains mathematical model of synchronous machines. The model considers three-phase synchronous machines with excitation windings or permanent magnets on the rotor. This model does not include damper windings, which are introduced and explained in Chap. 21. The model represents transient and steady state behavior in electrical and mechanical subsystems of synchronous machines. Analysis and discussion introduce and explain Clarke and Park coordinate transforms. The model includes differential equations that express the voltage balance in stator and rotor windings, inductance matrix which relates flux linkages and currents, Newton differential equation of motion, expression for the air gap power, and expression for the electromagnetic torque. The model development process is very similar to that of the induction machine, which is detailed in Chap. 15. Therefore, some considerations are shortened or removed. The model obtained in this chapter is suitable for both isotropic (cylindrical) and anisotropic (salient pole) machines. This chapter closes with some basic considerations on the reluctant torque and synchronous reluctance machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.