Abstract

RNA-directed DNA methylation (RdDM) is a plant-specific de novo methylation pathway that is responsible for maintenance of asymmetric methylation (CHH, H = A, T or G) in euchromatin. Loci with CHH methylation produce 24 nucleotide (nt) short interfering (si) RNAs. These siRNAs direct additional CHH methylation to the locus, maintaining methylation states through DNA replication. To understand the necessary conditions to produce stable methylation, we developed a stochastic mathematical model of RdDM. The model describes DNA target search by siRNAs derived from CHH methylated loci bound by an Argonaute. Methylation reinforcement occurs either throughout the cell cycle (steady) or immediately following replication (bursty). We compare initial and final methylation distributions to determine simulation conditions that produce stable methylation. We apply this method to the low CHH methylation case. The resulting model predicts that siRNA production must be linearly proportional to methylation levels, that bursty reinforcement is more stable and that slightly higher levels of siRNA production are required for searching DNA, compared to RNA. Unlike CG methylation, which typically exhibits bi-modality with loci having either 100% or 0% methylation, CHH methylation exists across a range. Our model predicts that careful tuning of the negative feedback in the system is required to enable stable maintenance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.