Abstract

Cells mechanically interact with their environment to sense, for example, topography, elasticity and mechanical cues from other cells. Mechano-sensing has profound effects on cellular behaviour, including motility. The current study aims to develop a mathematical model of cellular mechano-sensing on planar elastic substrates and demonstrate the model's predictive capabilities for the motility of individual cells in a colony. In the model, a cell is assumed to transmit an adhesion force, derived from a dynamic focal adhesion integrin density, that locally deforms a substrate, and to sense substrate deformation originating from neighbouring cells. The substrate deformation from multiple cells is expressed as total strain energy density with a spatially varying gradient. The magnitude and direction of the gradient at the cell location define the cell motion. Cell-substrate friction, partial motion randomness, and cell death and division are included. The substrate deformation by a single cell and the motility of two cells are presented for several substrate elasticities and thicknesses. The collective motility of 25 cells on a uniform substrate mimicking the closure of a circular wound of 200µm is predicted for deterministic and random motion. Cell motility on substrates with varying elasticity and thickness is explored for four cells and 15 cells, the latter again mimicking wound closure. Wound closure by 45 cells is used to demonstrate the simulation of cell death and division during migration. The mathematical model can adequately simulate the mechanically induced collective cell motility on planar elastic substrates. The model is suitable for extension to other cell and substrates shapes and the inclusion of chemotactic cues, offering the potential to complement in vitro and in vivo studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.