Abstract

The article presents the steps of modeling of the dynamics of a levitating cart of an unmanned aerial vehicle (UAV) magnetic catapult. The presented in the article innovative catapult is based on the Meissner effect occurring between high-temperature superconductors (HTS) and a magnetic field source. The catapult suspension system consists of two elements: fixed to the ground base with magnetic rails and a moving cart. Generating magnetic field rails are made of neodymium magnets. Levitation of the launcher cart is caused by sixteen superconductors YBCO, placed in the cart frame supports. Described in the article model contains the system of Cartesian reference frames, kinematic constrains, equations of motion and description of forces acting on the cart as well as exemplary numerical simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.