Abstract

High gradient magnetic separation is widely used in magnetic minerals upgrading, and its separation performance is significant depending on the parameters. In this investigation, the Mathematical model of the plate high gradient magnetic separator is established, the magnetic induction and the flow field distribution are investigated based on the COMSOL multi-physical simulation, and then the separation efficiency and TiO2 grade are analyzed using the plate high gradient magnetic separator. Additionally, the key factors affecting the efficiency of mineral separation are detailed in the experimental separation, the separation efficiency is demonstrated and its feasibility is verified by experiments. It is founded that the mathematical model and simulation results are basically validated by the experimental separation process, and the TiO2 grade can be effectively upgraded from 5.2% to 11.5% with the rinsing water consumption 9.5 L/min and the belt rotating speed 2 r/min. It is thus concluded that plate high gradient magnetic separator has provided an effective way in upgrading ilmenite quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call