Abstract

This paper presents a mathematical model of heat pump exchangers and their thermal interaction with a fan for an air dryer. The calculation algorithm developed for the finned heat exchangers is based on the ε-NTU method, allowing the determination of air side and refrigerant side heat transfer coefficients, evaporator and condenser heat capacity and air parameters at the dehumidifier outlet with known exchanger geometries, initial air parameters and mass flow rate. The model was verified on an industrial dehumidifier test bench. This enabled the heat transfer coefficients for the exchanger to be calculated as a function of the speed and, therefore, the power of the fan’s drive motor. An increase in fan performance on the one hand results in an increase in the heat transfer rate, but, on the other hand, it causes an increase in the total energy consumption of the motor. Thus, while it causes an increase in drying capacity, it also causes an increase in the energy consumption of the dehumidifier. In order to optimise the unit in terms of energy consumption, it is therefore necessary to determine a function that relates the amount of heat exchanged to the efficiency of the fan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call