Abstract

<p>Large amounts of methane hydrate locked up within marine sediments are associated to mud volcanoes. We have investigated by means of mathematical modeling the unsteady process of accumulation of gas hydrates associated with the processes of mud volcanism. A mathematical model has been developed. The system of equations of the model describes the interrelated processes of filtration of gas-saturated fluid, thermal regime and pressure, and accumulation of gas hydrates in the seabed in the zone of thermobaric stability of gas hydrates. The numerical simulation of the accumulation of gas hydrates in the seabed in the deep structures of underwater mud volcanoes has been carried out using the realistic physical parameters values. The influence of the depth of the feeding reservoir and the pressure in it on the evolution of gas hydrate accumulations associated with deep-sea mud volcanoes is quantitatively analyzed. Modeling quantitatively showed that the hydrate saturation in the zones of underwater mud volcanoes is variable and its evolution depends on the geophysical properties of the bottom environment (temperature gradient, porosity, permeability, physical properties of sediments) and the depth of the mud reservoir and pressure in it. The volume of accumulated gas hydrates depends on the duration of the non-stationary process of accumulation between eruptions of a mud volcano. The rate of hydrate accumulation is tens and hundreds times the rate of hydrate accumulation in sedimentary basins of passive continental margins.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.