Abstract

A set ofl-dimensional mathematical models were developed to simulate both the steady state and transient performance of monolithic catalytic incinerators for VOC abatement. In modelling transient performance, quasi-steady state gas phase was assumed since transient response time is determined primarily by the thermal inertia of the monolith. Higher inlet gas temperatures and lower gas velocities were predicted to give higher conversion and faster response times. VOC concentration had little influence on the performance within the concentration ranges used. A catalytic incinerator is shown to operate typically under mass transfer limited conditions, and monolith channel density and shape have significant influence on the conversion and monolith heating time. The metallic monolith was predicted to show superior steady state and transient responses due to its lower thermal inertia generated by higher cell density and thinner wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.