Abstract
The current work presents a mathematical model to simulate “viscoplastic fluid hammer”-overpressure caused by sudden viscoplastic fluid deceleration in pipelines. The flow is considered one-dimensional, isothermal, laminar, and weakly compressible and the fluid is assumed to behave as a Bingham plastic. The model is based on the mass and momentum balance equations and solved by the method of characteristics (MOC). The results show that the overpressures taking place in viscoplastic fluids are smaller than those occurring in Newtonian fluids and also that two pressure gradients-one negative and one positive-are possibly noted after pressure stabilization. The pressure stabilizes nonuniformly on the pipeline because viscoplastic fluids present yield stresses. Overpressure magnitudes depend not only on the ratio of pressure wave inertia to viscous effect but also on the Bingham number. The pipeline designer should take into account the viscoplastic fluid behavior reported in this paper when engineering a new pipeline system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.