Abstract

Aiming at kinematic accuracy and its’ error sources of a free floating space robot, a mathematical kinematic error model based on the concept of virtual manipulator and screw theory is proposed in this paper for a free-floating space robot. Based on screw theory, structural parameters in the form of motion screw and their error expressions derived from various error sources are deduced. The effect of mass error, CM (Center of Mass) error and structural parameter error on the kinematic accuracy of the free-floating space manipulator is analyzed. A simulation is demonstrated for verifying the correctness of the kinematic error model and the effect of various error sources on the free-floating space robot. The error model and the result deriving from analyzing are vital for studying the kinematic accuracy of the space manipulator when it is under a free-floating mode, and for controlling and assigning various errors when a space robot is developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.