Abstract

Abstract A mathematical model for the large deflection dynamics of a compliant beam mechanism is presented. The mechanism simulates the motion of a slider-crank device. The system contains a highly flexible beam that provides the compliant motion from a sliding mass at one end to a rotating hinge point at the other end. Basic models for friction and beam dissipation effects are included. Principles of mechanics are used to derive a nonlinear integro-partial differential equation for the complete beam/mass system in the curved space of the deformed beam. The resulting equation is cast into a generalized nondimensional form suitable for studying system behavior for a broad range of system sizes. The dynamic equation is solved in curved space by applying a spatial solution that closely represents the large deflection measured static deflection of the beam. The nonlinear system dynamics are simulated for an initial large deflection of the mechanism and compared to experimental results for an actual physical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.