Abstract

A three‐dimensional mathematical model has been developed to predict growth and removal of inclusions during gas stirring through eccentric tuyeres in a ladle. In the model, the efficiency of inclusion removal is investigated under three different collision mechanisms: Brownian, turbulent and Stokes collision. The Importance of the three approaches of wall adhesion, Stokes flotation and bubble adhesion on inclusion removal is analysed and the efficiency of inclusion removal through three types of tuyeres in central, eccentric and multi‐tuyere form is studied. The results indicate that inclusion growth resulting from turbulent collision is most important and the effect of Stokes collision is remarkable with increased inclusion size, while inclusion growth resulting from Brownian collision is negligible. Removal by Stokes flotation is the main mechanism for large inclusions, while inclusion removal by wall adhesion is negligible. The smaller the bubbles are, the higher the efficiency of inclusion removal is. The type of tuyere arrangement has a great effect on inclusion removal. Inclusion removal in a 135t ladle with one eccentric tuyere is more efficient than in a ladle with central tuyere or multi‐tuyere design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call