Abstract
A three‐dimensional mathematical model has been developed to predict growth and removal of inclusions during gas stirring through eccentric tuyeres in a ladle. In the model, the efficiency of inclusion removal is investigated under three different collision mechanisms: Brownian, turbulent and Stokes collision. The Importance of the three approaches of wall adhesion, Stokes flotation and bubble adhesion on inclusion removal is analysed and the efficiency of inclusion removal through three types of tuyeres in central, eccentric and multi‐tuyere form is studied. The results indicate that inclusion growth resulting from turbulent collision is most important and the effect of Stokes collision is remarkable with increased inclusion size, while inclusion growth resulting from Brownian collision is negligible. Removal by Stokes flotation is the main mechanism for large inclusions, while inclusion removal by wall adhesion is negligible. The smaller the bubbles are, the higher the efficiency of inclusion removal is. The type of tuyere arrangement has a great effect on inclusion removal. Inclusion removal in a 135t ladle with one eccentric tuyere is more efficient than in a ladle with central tuyere or multi‐tuyere design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.