Abstract

In the preceding work, Brasiello et al. (2013) developed a mathematical model for eggplant's dehydration taking into account the shrinkage effects. Although the model provided good results in predicting the total water weight loss of slices, at that time, no information was given about the capability of predicting water content profiles inside the material. This is a very important issue in order to catch some fundamental aspects of dehydration with shrinkage. In this paper, we analyze the evolution of the water content profiles inside cylindrical samples of eggplant during dehydration using a mathematical model which takes into account shrinkage effects. In particular, we show the good agreement between numerical derived spatial profiles and the Magnetic Resonance Imaging (MRI) data available in Literature. Model's parameters are calculated through a suitable simplified procedure, which uses experimental data from samples of a different shape. The numerical results are compared to those derived from the same procedure applied to Fick's diffusion equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.