Abstract

This paper presents the method to calculate the geometries of instantaneous chip in five-axis milling. The inclination angle changes in between two consecutive CC-points were taken into account in the calculation. In the first stage, the engagement angle, the axial depth of cut and cut width were determined through the mapping technique. The engagement point of the Work piece Coordinate System (WCS) was mapped to a Tool Coordinate System (TCS). In the second stage, the engagement angle and depth of cut, which were defined in the first stage were then used as a primary input to obtain the cut thickness and cut width. Two simulation tests have been presented to verify the ability of the proposed model to predict the cut geometry. The first tests revealed that the inclination angle makes the size of the cut thickness and cut width fluctuate. The cut width increased when the tool inclination angle increased. For the cut thickness, its magnitude was influenced by two effects, the orientation effect and the tooth path effect. The final result was a compromise between these two effects. In the second simulation test, the proposed model was successfully implemented to support the feedrate scheduling method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call