Abstract

Silicon oxide (SiO) is a promising anode material for high-energy lithium-ion batteries, as it is made from low-cost precursors, has a potential close to that of Li, and has high theoretical specific capacity. However, the applications of SiO are limited by the intrinsic low electrical conductivity, large volume change, and low coulombic efficiency, which often lead to poor cycling performance. A common strategy to address these shortcomings is to blend SiO with graphite active materials to form a composite anode for better capacity retention. In this work, we derive a reduced order model (ROM1) using perturbation theory. We employ the multi-site, multi-reaction (MSMR) framework of a composite porous electrode blend consisting of two lithium-host materials, SiO and graphite. The ROM1 model employs a single-particle model (SPM) approach as the leading-order solution and involves the numerical analysis of a single, nonlinear partial differential equation for each host material that describes diffusion by means of irreversible thermodynamics, wherein chemical-potential gradients are the driving forces for the diffusion. The first-order correction treats losses other than that of the SPM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.