Abstract

Flash memory, ubiquitous in diverse electronic devices, confronts persistent challenges stemming from inherent errors that jeopardize data integrity. This research situates itself at the intersection of these challenges and advancements, proposing an inventive error correction coding framework that harnesses the unique capabilities of analysis with a hybrid error control coding (HECC) approach. In the proposed work, a mathematical model aimed at enhancing the flash memory by identifying the error pattern within the pages using the discrete fourier transform (DFT). By incorporating distinctive DFT mathematical properties, the proposed technique intends to improve flash memory error correction beyond traditional methods. The flash storage defect detection and rectification results with hybrid error correction coding achieved bit error rate (BER) of 4.3e-6, latency 14.1, mean 15.1 and standard deviation 1.0. Error correction efficiency 98% and storage overhead 10%. With this approach results are significantly improving the error correction efficiency, reduce storage overhead and enhanced adaptability to diverse error patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.