Abstract

Mathematical models were developed considering wall movement, blood pulsation and flow dynamics of the blood in the interlobar artery. The formulated models were based on the fact that the motion of blood vessel wall is not only influenced by pulsation, but also other physiological processes like heartbeat, breathing, and body posture. The Newton’s second Law of motion was employed in assembling the forces acting on the interlobar artery. The wall shear stress (WSS) was studied alongside, arterial walls to study the actual flow dynamics and investigate the blood flow behaviour. The results of the study were presented on both two – dimensional (2D) and three (3D) – dimensional graphs showing a more realistic interaction between the arterial wall and the blood flow in patients with HIV/AIDS. It was deduced that the blood flow velocity decreased with time across the varying frequency from 0.20Hz to 0.50Hz in the interlobar arterial channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call