Abstract

The linear and nonlinear aspects of the dynamics of the cell cycle kinetics of cell populations are studied. The dynamics are represented by difference equations. The characteristics of cell population systems are analyzed by applying the model to Ehrlich ascites tumor. The model applied for the simulations of the growth of Ehrlich ascites tumor cells incorporates processes of cell division, cell death, transition of cells to resting states and clearance of dead cells. Comparison of the results obtained with the model and the experimental data suggests that the duration of the mean generation time of the proliferating EAT cells increases with aging of the tumor. An attempt is made to relate the prolongation of cell mean generation time with processes of cell death and dead cell clearance. Studying the transition of cells to the resting states, it becomes apparent that in fact transition of proliferating cells to the resting states occurs somewhere close to the end of the cell cycle and with a rate that varies with the age of the tumor. Time course behavior of the cell age, cell size, and cell DNA distribution with aging of the tumor are obtained. Variations in average size and average DNA contents are determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call