Abstract
Network performance can be increased if the traditionally separated network layers are jointly optimized. Recently, network utility maximization has emerged as a powerful framework for studying such cross-layer issues. In this paper, we review and explain three distinct techniques that can be used to engineer utility-maximizing protocols: primal, dual, and cross decomposition. The techniques suggest layered, but loosely coupled, network architectures and protocols where different resource allocation updates should be run at different time-scales. The decomposition methods are applied to the design of fully distributed protocols for two wireless network technologies: networks with orthogonal channels and network-wide resource constraints, as well as wireless networks where the physical layer uses spatial-reuse time-division multiple access. Numerical examples are included to demonstrate the power of the approach
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.