Abstract

We compare several approaches to the history of mathematics recently proposed by Blasjo, Fraser--Schroter, Fried, and others. We argue that tools from both mathematics and history are essential for a meaningful history of the discipline. In an extension of the Unguru-Weil controversy over the concept of geometric algebra, Michael Fried presents a case against both Andre Weil the "privileged observer" and Pierre de Fermat the "mathematical conqueror." We analyze Fried's version of Unguru's alleged polarity between a historian's and a mathematician's history. We identify some axioms of Friedian historiographic ideology, and propose a thought experiment to gauge its pertinence. Unguru and his disciples Corry, Fried, and Rowe have described Freudenthal, van der Waerden, and Weil as Platonists but provided no evidence; we provide evidence to the contrary. We analyze how the various historiographic approaches play themselves out in the study of the pioneers of mathematical analysis including Fermat, Leibniz, Euler, and Cauchy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.