Abstract

The detection, in a wide variety of cancer types, of a population of highly tumorigenic cells that exhibit self-renewal and multipotency, which are hallmarks of stem cells, has transformed the current view of tumor initiation, progression, and treatment. Here, we develop and analyze a mathematical model for tumor growth that is based on the current biological understanding of the processes that underlie cellular expansion under the hierarchical guidelines of the cancer stem cell (CSC) hypothesis. Important features of the model include (i) a nonlinear probability of CSC self-renewal that reflects the fact that this key type of stem cell division can be regulated by extrinsic and intrinsic chemical signaling as well as environmental (niche) constraints and (ii) an amplification factor that captures the transient amplifying divisions that are a defining characteristic of progenitor cells. We present a thorough mathematical analysis of the model and highlight the conditions required for tumors to evolve toward either bounded or exponential growth. Numerical simulations further illustrate the impact of the various parameters on the tumor growth rate and on the heterogeneous cellular composition, which varies during progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call