Abstract

The molecular mechanisms that govern biological evolution have not been fully elucidated so far. Recent studies indicate that regulatory proteins, acting as decision-making complex devices, can accelerate or retard the evolution of cells. Such biochemically controlled evolution may be considered as an optimization process of logical nature aimed at developing fitter species that can better survive in a specific environment. Therefore, we may assume that new genetic information can be stored in the cell memory (i.e., genome) by a sophisticated biomolecular process that resembles writing in computer memory. Such a hypothesis is theoretically supported by a recent work showing that logic is a necessary component of life, so living systems process information in the same way as computers. The current study summarizes existing evidence showing that cells can intentionally modify their stored data by biochemical processes resembling stochastic algorithms to avoid environmental stress and increase their chances of survival. Furthermore, the mathematical and physical considerations that render a read-write memory a necessary component of biological systems are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call