Abstract

Measles is a highly transmissible disease in children around the world. According to the World Health Organization (WHO), 73% of deaths of children were due to measles in 2018. This study describes the physical solution of the SIQR model for measles spread under the effect of natural delay amongst different compartments. By three different numerical techniques, the efficacies of solutions of the underlying system have been compared and a clear preference of nonstandard finite-difference (NSFD) scheme over the rest has been established. It has also been observed, on principle, that the NSFD formulation recovers all the essential traits of a continuous model namely the boundedness, positivity and stability of equilibriums of populations. The numerical results have also been supported by a very strong classical analysis of the model where the existence of a solution vector in explicit subsets of the function spaces has been guaranteed which leads to optimization of fixed-point methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call