Abstract

The main goal of this article is to analyze a three-dimensional model for stress and velocity fields in grounded glaciers and ice sheets including the role of normal deviatoric stress gradients. This model leads to a nonlinear system of stationary partial differential equations for the velocity with a viscosity depending on the stress–tensor but which is not explicitly depending on the velocity. The existence and uniqueness of a weak solution corresponding to this model is established by using the calculus of variations. The approximation of this model is made by a finite element method with piecewise polynomial functions of degree 1 on a tetrahedral mesh and error analysis is performed. Numerical solutions show that the theoretical results we have obtained are almost optimal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.