Abstract

This article presents a mathematical and experimental model of a neuronal oscillator with memristor-based nonlinearity. The mathematical model describes the dynamics of an electronic circuit implementing the FitzHugh–Nagumo neuron model. A nonlinear component of this circuit is the Au/Zr/ZrO2(Y)/TiN/Ti memristive device. This device is fabricated on the oxidized silicon substrate using magnetron sputtering. The circuit with such nonlinearity is described by a three-dimensional ordinary differential equation system. The effect of the appearance of spontaneous self-oscillations is investigated. A bifurcation scenario based on supercritical Andronov–Hopf bifurcation is found. The dependence of the critical point on the system parameters, particularly on the size of the electrode area, is analyzed. The self-oscillating and excitable modes are experimentally demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.