Abstract

The lectures, covering various aspects of the many-body problem in nuclei, review present knowledge and include some unpublished material as well. Bohigas and Giannoni discuss the fluctuation properties of spectra of many-body systems by means of random matrix theories, and the attempts to search for quantum mechanical manifestations of classical chaotic motion. The role of spectral distributions (expressed as explicit functions of the microscopic matrix elements of the Hamiltonian) in the statistical spectroscopy of nuclear systems is analyzed by French. Zucker, after a brief review of the theoretical basis of the shell model, discusses a reformulation of the theory of effective interactions and gives a survey of the linked cluster theory. Goeke's lectures center on the mean-field methods, particularly TDHF, used in the investigation of the large-amplitude nuclear collective motion, pointing out both the successes and failures of the theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call